Communications to the editor

ASPARENOMYCIN A, A NEW CARBAPENEM ANTIBIOTIC

Sir:

In the course of our screening work for new β -lactam antibiotics, we found that a streptomycete numbered PA-31088, which was identified as a new species and named *Streptomyces tokunonensis* sp. nov., produces a new carbapenem antibiotic named asparenomycin A* and some related antibiotics. These antibiotics were also found in the culture broth of another strain PA-39504 identified as *Streptomyces argenteolus*.

The strain PA-31088 was fermented in 30-liter jar fermentor containing 20 liters of a medium composed of 2.4% tomato paste, 2.4% dextrin, 1.2% dry yeast, 0.0006% CoCl₂·6H₂O, at 28°C under agitation of 300 rpm and aeration of 20 liters per minute for 65 hours.

The antibiotics in the culture filtrate (100 liters) were adsorbed on a column of Amberlite IRA-68 (Cl⁻) (Rohm and Haas Co., Ltd.) and eluted with 5% NaCl. The active eluate was desalted on a Diaion HP-20 (Mitsubishi Kasei Kogyo Co., Ltd.) column and then adsorbed on an activated carbon at pH 5.0 and eluted with 60% acetone (pH 7.0). Evaporation and lyophilization of the eluate gave a crude powder (20 g). Isolation of asparenomycin A was achieved by successive column chromatography on a Pre PAK-500/C₁₈ column of a High Speed Liquid Chromatography System 500 (Waters Co., Ltd.) and a column of a Diaion HP-20AG (200~ 400 mesh) with phosphate buffer solution, pH 7.0. The fraction of asparenomycin A from the last column was desalted on an HP-20 column and lyophilized. A substantially pure preparation of the antibiotic was obtained as the sodium salt (210 mg).

Asparenomycin A sodium salt is a colorless amorphous powder, which gradually decomposes above 150°C, and is soluble in water, methanol and dimethylsulfoxide but insoluble in ethyl acetate, acetone and chloroform. It shows positive color reaction to EHRLICH's reagent but is ninhydrin-negative. On paper electrophoresis in

* Presented in Japan Kokai (patent) 55-13,628 (Aug. 10, 1980) as a name PA-31088-IV. 50 mM phosphate buffer, pH 7.0 at 10 volt/cm for 3 hours, the antibiotic moved towards the anode with the same mobility as that of penicillin N. Elemental analysis (Found: C, 45.30; H, 4.82; N, 7.74; S, 7.86; Na, 5.99) and FD mass: 355 (MH⁺ of the methyl ester) agreed with a molecular formula $C_{14}H_{16}N_2O_6S$ for the free acid. The antibiotic shows UV (10 mM phosphate buffer, pH 7.0), λ_{max} : 241 nm (ε , 21472), 280 nm

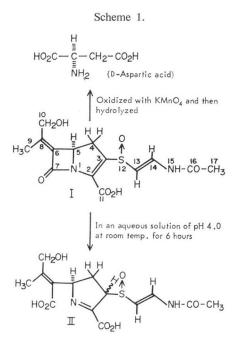
Table 1. ¹H NMR spectra of I and II sodium salts.

Assignment	δ ppm (J Hz)		
	I	II	
9-CH ₃	1.99 (s)	1.85 (s)	
17-CH ₃	2.12 (s)	2.16 (s)	
		2.17 (s)	
$4-CH_2$	3.16 (d-like)	2.0~2.9 (m)	
5-CH	5.01 (t-like)	$4.6 \sim 5.4$ (m)	
3-CH			
10-CH ₂	4.26 (s)	4.23 (s)	
		4.24 (s)	
13-CH	6.34 (d, 14.0)	6.11 (d, 14.0)	
		6.22 (d, 14.1)	
14-CH	7.53 (d, 14.0)	7.50 (d, 14.0)	
		7.61 (d, 14.1)	

Spectra were recorded with a Varian XL-100-12A spectrometer in D_2O at room temperature using DSS as an internal reference.

Table 2. ¹³C NMR spectrum of I sodium salt.

Assignment (Type)	δ ppm	Assignment (Type)	δ ppm
9 (-CH ₃)	15.9 (q)	14 (=CH-)	134.7 (d)
17 (-CH ₃)	23.0 (q)	$3^{a} (=C \leq)$	135.6 (s)
4 (-CH ₂ -)	32.5 (t)	$2^{a} (=C \leq)$	143.2 (s)
5 (>CH-)	60.4 (d)	8 (=C<)	150.3 (s)
10 (-CH ₂ -)	64.5 (t)	7 (O=C<)	166.7 (s)
13 (=CH-)	111.7 (d)	16 ($\mathbf{O} = \mathbf{C} \langle \rangle$)	173.2 (s)
$6^{a} (=C\langle)$	134.2 (s)	11 (O = C <)	174.6 (s)


Spectrum was recorded with a Varian XL-100-12A spectrometer in D₂O at 5°C using CH₃CN as an internal reference. δ : Calculated by assuming δ (CH₃CN)=1.7 ppm from DSS.

^a Tentative assignments.

(shoulder), 320 nm (shoulder); IR (KBr), 1750, 1695, 1620, 1380, 1270, 1200, 1045, 950 cm⁻¹; $[\alpha]_{2^{\circ}}^{\circ\circ} -210.8 \pm 5.1^{\circ}$ (*c* 0.536, 10 mM phosphate buffer, pH 7.0); CD: $[\theta]_{390}$ 0, $[\theta]_{315} -22754$, $[\theta]_{278} -102702$, $[\theta]_{258.5}$ 0, $[\theta]_{243} +93292$, $[\theta]_{100} +14480$ (*c* 0.0458, 10 mM phosphate buffer, pH 7.0). The signals and assignments of ¹H NMR and ¹³C NMR spectra are shown in Tables 1 and 2.

Interpretation of these physico-chemical properties and chemical behaviors described below lead to the structure of asparenomycin A as I in Scheme 1.

In an aqueous solution of pH 4.0, asparenomycin A was hydrolyzed to a non β -lactam compound (II) (the absorption at $1750 \text{ cm}^{-1} \text{ dis-}$ appeared) at room temperature within 6 hours. Most peaks of the ¹H NMR spectrum of II were observed as pairs, suggesting that Π is a mixture of diastereoisomers caused by appearance of a new additional proton (Table 1).¹⁾ II moves two times faster than penicillin N in the paper electrophoresis. II shows a positive EHRLICH reaction but a negative ninhydrin reaction. When an aqueous solution of II of pH 2.0 was allowed to stand at room temperature for 16 hours, no significant changes were detected by thin-layer chromatography and by paper electrophoresis. A high possibility of E orientation at C-8 was indicated by the fact that II does not give detectable γ -lactone. When asparenomycin A was

oxidized with KMnO₄ and then hydrolyzed with 6 N HCl at 110°C for 2 hours, a significant amount of aspartic acid was detected by an automatic amino acid analyzer. The configuration of the amino acid was determined to have D-configuration from the result of HPLC of its L-leucylated product. Consequently the *R* configuration at 5-C is concluded.

Organism	MIC (µg/ml) ^a			
organism	Asparenomycin A	Ampicillin	Cefoxitin	
Staphylococcus aureus 209P JC-1	1.56	0.1	1.56	
Staphylococcus aureus C-14 ^b	1.56 6.25		3.13	
Streptococcus pyogenes C-203	1.56 0.05		0.78	
Escherichia coli NIHJ JC-2	1.56	6.25	3.13	
Escherichia coli 377°	0.39	100	12.5	
Klebsiella pneumoniae SRL-1	0.78	0.78	1.56	
Klebsiella sp. 363 ^b	0.78	>100	1.56	
Proteus mirabilis PR-4	3.13	1.56	1.56	
Proteus vulgaris CN-329	12.5	50	3.13	
Enterobacter cloacae 233	1.56	50	>100	
Serratia marcescens ATCC 13880	12.5	25	12.5	
Pseudomonas aeruginosa ATCC 25619	25	>100	>100	

Table 3. Antibacterial activity of asparenomycin A, ampicillin and cefoxitin.

^a Determined by agar dilution method in MUELLER-HINTON agar and inoculated by one loopful of ca. 10⁶ cells per ml.

^b Penicillinase producing strain.

^c Cephalosporinase producing strain.

Table 4. Inhibition of β -lactamases produced by Gram-negative bacteria by asparenomycin and clavulanic acid.

Source of <i>B</i> -lactamase ^a	Class ^b	Minimum effective concentration (µg/ml)°	
Source of p-ractamase"		Asparenomycin A	Clavulanic acid
Escherichia coli 6	Ib	1.0	250
Enterobacter cloacae 92	Ia	1.0	>250
Proteus vulgaris 31	Ic	0.001	1
Escherichia coli W3110 RTEM	IIIa	0.016	0.063
Klebsiella sp. 363	IV	0.063	0.063
Enterobacter cloacae 53	IVa	0.25	0.063

^a Enzyme preparations used were partially purified.

^b Classification of RICHMOND and SYKES.

^c Inhibitor was incubated with enzyme at 30°C for 10 minutes prior to adding nitrocefin (50 μ g/ml) and minimum concentration to inhibit color change was determined.

The complete structure of asparenomycin A including the orientation of sulfoxide (R) was confirmed by X-ray crystallographic analysis²) of the *p*-nitrobenzyl ester and the methyl ester of the antibiotic.

Asparenomycin A is unique in having the substituted ethylidene side chain in the structure and is obviously distinguished from hitherto known carbapenem antibiotics such as thienamycin, olivanic acid derivatives, PS-5 and carpetimycins A and B.³⁾

Asparenomycin A is active against a broad range of Gram-positive and Gram-negative bacteria including β -lactamase producing organisms as shown in Table 3. It shows strong inhibitory activity against various type of β -lactamases as shown in Table 4.

Acknowledgements

The authors wish to thank to Drs. Y. NAKAGAWA and Y. IKENISHI of our laboratories for the measurement of FD mass spectra.

> Kentaro Tanaka Jun'ichi Shoji Yoshihiro Terui

Naoki Tsuji Eiji Kondo Mikao Mayama Yoshimi Kawamura Teruo Hattori Koichi Matsumoto Tadashi Yoshida

Shionogi Research Laboratories Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

(Received April 23, 1981)

References

- MAEDA, K.; S. TAKAHASHI, M. SEZAKI, K. II-NUMA, H. NAGANAWA, S. KONDO, M. OHNO & H. UMEZAWA: Isolation and structure of a βlactamase inhibitor from *Streptomyces*. J. Antibiotics 30: 770~772, 1977
- 2) Will be published elsewhere.
- 3) NAKAYAMA, M.; A. IWASAKI, S. KIMURA, T. MIZOGUCHI, S. TANABE, A. MURAKAMI, I. WATA-NABE, M. OKUCHI, H. ITOH, Y. SAINO, F. KOBA-YASHI & T. MORI: Carpetimycins A and B, new β -lactam antibiotics. J. Antibiotics 33: 1388 ~ 1390, 1980 and references cited therein.